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Abstract 

 
In an age of cloud computing, mobile users, and wireless networks, the availability of decision 
support related computing resources can no longer guarantee five-nines (99.999%) availability 
but the dependence on decision support systems is ever increasing.  If not already, the likelihood 
of obtaining accurate deterministic advice from these systems will become critical information.  
This study proposes a probabilistic model that maps decision resource availability to correct 
decision outcomes.  Grounded in system reliability theory, the probability functions are given 
and developed. The model is evaluated with a simulated decision opportunity and the outcome of 
the experimentation is quantified using a goodness of fit measure and ANOVA testing. 
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1. Introduction 
The availability of pervasive networking, inexpensive storage, and high performance computing 
has created the foundation for a broad range of new approaches capable of delivering on the 
promise of cloud computing.  The “cloud” can be defined as the environment where computing 
resources are hosted in and used from the distributed Internet environment.  Cloud computing 
extends the notion of desktop computing to the scalability and virtualization of distributed 
processing servers on the Internet.  Within the cloud, an application is built using resources from 
multiple services and potentially from multiple locations.  Cloud computing is typically 
implemented as a software-as-a-service model.  This removes the burden of software updates and 
server maintenance from business and other users. One of the most significant benefits of cloud 
computing is that it provides a way to increase capacity or add capabilities dynamically as they 
are needed without investing in new infrastructure, training new personnel, or licensing new 
software.  For many companies, the true value of cloud computing beyond the “pay as you go” 
model is the time to value ratio and reduced risk, compared to in-house implementations. 
 
A user of cloud computing services doesn’t necessarily care about how they are implemented, 
what technologies are used, or how they are managed. The most significant concern is that there 
is access to it and that the service/application has a level of reliability necessary to meet the 
functional requirements (Buyya et al. 2008).  In this context, reliability may be one of the most 
significant issues facing cloud computing.  Very few applications have been able to achieve 



100% availability.  Moreover, while a cloud computing application may be 100% reliable, users’ 
access to it may not be.  This issue is complicated in the face of mobile users and access using 
3G wireless networking technologies.    
 
Consider the following example.  A user gets on a train and begins conducting a session with a 
cloud application-based decision support system.  As the train begins to move, the environmental 
computing conditions begin to change.  If the train were to go through a tunnel, the user’s 
connectivity may temporarily be interrupted; potentially regaining the connection when the train 
emerges from the tunnel. If a user were made to know that the tunnel was coming and 
connectivity may be lost, the user could adjust their interaction with the decision support system 
(DSS), or even plan their usage of the system in a manner that avoids complete or disastrous 
interruption, e.g. downloading data/information and interacting locally.  While it may not be 
possible to know exactly when and for how long a session may be interrupted, it may be possible 
to know the likelihood of interruption occurrences and durations.  The work of Russell et al. 
(2008) has demonstrated that knowledge of computing resources’ availability can affect the 
support provided by applications and even affect decisions associated with that use.  Russell et 
al’s research indicates that it is important to extend awareness of computing resources’ such as 
data, network connectivity, or software applications to system users and not just implement it as 
an internal hardware or software algorithm. 
 
This work extends Russell’s et al’s work as the basis for use with cloud computing decision 
support applications.  Conceptually, the research in this paper seeks to develop a probabilistic 
model that can be used in conjunction with collected availability context data.  To further the 
understanding of the effect of availability context information on decision making, this paper 
proposes a probabilistic model to describe the relationship between decision outcome accuracy 
and evaluates the model using a simulation.  In Section 2, a discussion of existing reliability and 
availability-related technologies is discussed, followed by the introduction of a probabilistic 
reliability model for decision support systems.  In section 2.3, a probabilistic model that maps 
decision outcome to DSS availability is presented.  Section 3 explains the simulation experiment 
that evaluates the decision outcome model.  Section 4 presents the results of this experiment 
followed by conclusions in Section 5.   
 
2. System Reliability, Availability, and Decision Making 
Many people confuse or interchange the concepts of system reliability and availability.  Before 
examining availability in depth, it is helpful to have an understanding of the distinction between 
the two concepts.  These concepts are most frequently discussed in a hardware or equipment 
context, but also have applicability to software.  Most often associated with component or system 
failure, reliability is a measure of the likelihood that a system or process will perform its 
designed function for a specified period of time.  Availability is a relative measure of the extent 
that a system can perform its designed function (Bhagwan et al. 2003).  As a relative measure, 
availability includes metrics such as delays, congestion, and loading.  To illustrate, the reliability 
of a system could be determined by the number of failures and the amount of time between them.  
So, if a system was broken twice as much as it was working, it would have 50% reliability. This 
same system would be unavailable 50% of the time.  However, a system does not have to be 
broken to be unavailable.  Consider if a system was so busy processing data that it could not 



handle any additional tasks.  The system is not broken, it is just temporarily busy.  Simply put, 
system availability includes system reliability, as well as delay-oriented interruptions. 
 
Reliability and availability both affect the systems that business people have become dependent 
on and there has been significant research on quantifying and minimizing system outages of any 
sort.  Much of this research has centered on computer system components or hardware.  
Reussner et al. (2003) use rich architecture definition language (RADL) to predict component 
reliability through compositional analysis of usage profiles and of environment component 
reliability.   Mikic-Rakic et al. (2005) propose a fast approximating solution for relating how 
software systems’ environmental deployment (wired, mobile, grid, etc.) that will affect its 
availability.  Henson (2006) suggests a method to improve hard disk reliability by dividing the 
hard disk file system data into small, individually repairable fault–isolation domains while 
preserving normal file system semantics. Dai et al. (2003) propose a model for a centralized 
heterogeneous distributed system and examines the distributed service reliability which is 
defined as the probability of successfully providing a service in a distributed environment.  All of 
these prior works concentrate on the system itself rather than the impact of low availability.   The 
emphasis on hardware components is typical of system availability research and seldom do these 
types of studies simultaneously address software service availability. 
 
With the recent interest in web services and service composition there has been a renewed 
research effort concentrating on software availability.  In the web service domain, hardware is 
seen as an underlying component, on which software functions run.   These independent services 
are loosely coupled and assembled to perform more complex functions.  As a result, the 
availability of software is critical to web service use and composition.  Notwithstanding its 
general consideration as an underlying component, even in a web service context, there is an 
implicit emphasis on systems hardware.  For example, Salas et al. (2006) proposed a method for 
providing an infrastructure that replicates web services across hardware on a wide area network.  
Sung et al. (2007) put forward  dynamic cluster configuration using a server agent and a service 
description server as a solution to improve computer service availability.  Other research in this 
area adopts the use of context information, such as physical location  about the service hardware 
(Ibach et al. 2004) or using network bandwidth reservation (Xu et al. 2003) to improve 
availability.  Research in web service availability has primarily addressed the issue of being able 
to compose the set of services that are necessary to fulfill a process or function. Like research in 
hardware availability, little attention is given to the impact of availability on outcomes resulting 
from system usage.  
 
The approach proposed in this study addresses the two limitations noted above (a focus on 
hardware only and the exclusion of outcome impact).  This prior research provides a solid 
foundation for quantifying, improving, and addressing system reliability (and subsequently 
availability) but these works have not extended this information to decision making outcomes.  
By mapping system availability to decision outcomes, users of cloud computing-based DSS may 
be made aware of the likelihood that a successful result can be obtained from an engagement 
with the system, within the time constraints of the decision opportunity. 
 
2.1 Existing Availability-Related Technologies 



In a decision support context, availability should be considered not only from a systems
viewpoint, but also from the perspective of decision-related resources. These resources may be 
models, data, services, agents, processing, output devices, other decision makers, or even the
decision maker requesting support.  While not all decision support systems and scenarios require 
external or distributed resources to provide guidance to a decision maker, most contemporary 
DSS utilize the benefits provided by computer networks.  The introduction of networking and 
distributed resources adds another dimension to the issue of resource availability.  As discussed 
above, there are many solutions to determine or quantify if hardware or a software service is 
reliably “on-line.”  However, availability goes beyond this on-off notion and encompasses more 
than resource online/offline - operating/failed status information.   
 
The obvious question is: how might details about resources’ availability be obtained?  Research 
from other domains provides answers to this question.  The first domain is high-availability
computing.  Research in this area has already identified methods to monitor and evaluate
hardware related statuses such as power (Chakraborty et al. 2006; Rahmati et al. 2007), network 
characteristics (Roughan et al. 2004; Shahram et al. 2006), computer components (Brown et al. 
1999; Weatherspoon et al. 2005), processing/computing load (Zhoujun et al. 2007), and storage 
(Blake et al. 2003). 
 
The second domain provides status of resources that can be considered software services.
Software services provide a layer of abstraction for a full range of programmable functions and 
data.  Research in the area of web service composition and quality of service (QoS) can provide 
solutions delivering awareness knowledge for these types of resources.  Quality of service is
often defined as the probability that a network or service will meet a defined provision contract. 
This probability could be used by agents to forecast the likelihood of resource interruption as 
well as potentially quantitatively predict outage durations.  There is a significant amount of
research studying applications using QoS and QoS monitoring for service level agreements,
adaptation to changing system conditions, and web service composition (Ali et al. 2004; Loyall 
et al. 1998; Menasce 2004; Thio et al. 2005). Web service composition is a particularly active 
research area, rich with solutions for service availability, because of the critical nature of this 
information for process scheduling and execution planning (Peer 2005; Pistore et al. 2004). 
 
A third domain provides availability information on human users of decision support systems. 
From the perspective of “users as a resource,” human computer interaction research has provided 
several availability-oriented solutions.  Most of the efforts have focused on detecting if a user is 
and not necessarily when the user will become online and available (Begole et al. 2004;
Danninger et al. 2006; Muhlenbrock et al. 2004).  However, there are probabilistic models that 
can provide forecasts for humans’ presence and availability.  Horvitz et al. (2002) developed a 
prototype service intended to support collaboration and communication by learning predictive 
models that provide forecasts of users’ presence and availability. To accomplish this, they
collected data about user activity and proximity to multiple devices and combined this with
analyzed content of users’ calendars. 
 
The research in these three domains provides reasonable methods for obtaining quantitative
availability information regarding decision resources such as hardware, network, and software 
services (e.g. web server, database servers, and business logic applications), as well as

 

 

 
 

  

 

 
 

 

 

 
 

 

 



Figure 1. Decision resource hierarchy 

collaborators and systems users.  Because the research conducted in these other domains delivers 
viable solutions for this problem, the probability model proposed in this work does not focus on 
this issue.  Instead, the model is grounded in system reliability theory, extended to decision-
related resource availability, and focused on how correct decision outcome may be a function of 
these resources’ availability. 
 
2.2 Decision-related Computing Resource Availability as a System Reliability Problem 
Particularly in the case of DSS, decision resource availability may be analogous to system 
reliability.  This is because a decision resource may be the DSS itself, another system, data from 
some storage-system, a network communication medium, an output device (e.g. monitors, 
printers, etc.), collaborating system users, or even decision makers themselves.  One way to view 
a decision resource is as a hierarchical structure of interacting functions.  This hierarchical 
structure may have 1 – n levels and when the resource is a computing device, these levels would 
encompass hardware, firmware, and software.  The underlying concept is that a decision-
resource, via its hierarchy, relates to a number of sub-resources at lower levels of the hierarchy.  
The functions in a resource hierarchy act and interact together to provide the resource at the top 
of the hierarchy.  Upper level functions depend on lower levels to ensure their reliability and 
availability. 
 
Figure 1 illustrates a generalized hierarchy.  While every
level may not be necessary for every resource, the level
dependencies are evident.  Consider an example where a

 
 
 

DSS provides guidance by presenting information on a 
graphical map, e.g. a spatial DSS.  This DSS may require 
data from a remote website that converts street addresses 
to latitude and longitude.  This remote website/data would 
be considered a resource.  This resource depends on a 
hierarchy of dependent functions to be able to serve its 
purpose.  Examining Figure 1, without power/electricity, 
there is no connectivity or anything else above power. 
Without connectivity the data in storage cannot be
delivered.  Without storage, processing cannot occur; there 
is nothing to process.  Without processing, the software 

 
 

cannot operate, and if the software (web server, address-to-lat/long converter, or host operating 
system) fails, the resource cannot respond to the DSS’s request.  There is an implicit dependency 
from top to bottom but not the other way.  It is possible to not have connectivity, yet have power 
available and so on. 
 
Typically the availability of components, software, and systems is given in terms of its likelihood 
of being available; not the inverse (the likelihood it is not available).  In the reliability practice 
there is a concept called 5 nines that refers to uptime (availability).  If a system is said to have 5 
nines reliability it is available 99.999% of the time.  This translates to being unavailable 31.5 
seconds per year.  This measure is complicated in systems where there are dependencies, as is 
the case with a decision resource.  The hierarchical dependence seen in a decision resource 
would suggest that the probability of a resource being available can be viewed as the product of 
the levels in its hierarchy.  Each item in the hierarchy is independent unto itself but dependent on 



the level below it.  Therefore, if each hierarchy level’s availability is given in terms of it its 
potential availability (the likelihood it is available), probability theory can be applied.  Because 
the function at each level in the hierarchy is independent in terms of its availability and 
dependent on lower levels in terms of its unavailability, the multiplicative rule of probability 
applies.   Equation (1) shows the generalized form. 
 

)()()( BPAPBAP =∩  (1)
 
Building on this theory and applying it to Figure 1, let W=Power, C=Connectivity, G=Storage, 
O=Processing, and T=Software.  The probability of availability for each level in the hierarchy 
can be given according to Table 1.  Because availability is most commonly expressed in positive 
terms (e.g. uptime instead of downtime) the focus of Table 1 is on the probability that each level 
is available.  Due to the dependency on lower levels, the probability that each level is not 
available would be additive.  Table 1 shows the probability that each level in the hierarchy is 
determined by multiplying the previous levels’ probability by the current level’s probability and 
the overall availability of the decision resource is given by the probability of the topmost level.  
This leads to the generalized equation shown in (2) where P(R) represents the probability of the 
decision resource (R), and F represents the function at each level, for all levels i=1 through n. 
 

 
LEVEL 

 
FUNCTION 

FUNCTION 
PROBABILITY 

 
LEVEL PROBABILITY 

1 POWER P(W) P(W) 
2 CONNECTIVITY P(C) P(W) * P(C) 
3 STORAGE P(G) P(W) * P(C) * P(G) 
4 PROCESSING P(O) P(W) * P(C) * P(G) * P(O) 
5 SOFTWARE P(T) P(W) * P(C) * P(G) * P(O) * P(T) 

Table 1.  Hierarchy level availability probability 
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Extending the generalized resource availability equation in (2), all of the resources necessary for 
decision support can be accounted for similarly as a set of dependent resources.  In this case, all 
the resources are necessary for the system to provide direct advice and therefore dependent in the 
context of the DSS provided solution.  It follows that the availability of the system is given by 
Equation (3), where P(S) denotes the availability of all the decision resources and P(F) is the 
resource level availability, for all levels i=1 to n, for all resources r=1 to t. 
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Figure 2 shows a DSS that has 3 dependent resources.  To illustrate with the earlier example, 
Resource A would represent data stored in a data warehouse.  Resource B is the address to 
latitude and longitude web service, and Resource C would be the local processor that provides 
the graphical mapping.   The availability of the DSS’s guidance for this decision problem would 
be:  .85 * .50 * .75 = .319, or 31.9% availability. 
 



 
g pFi ure 2.  A DSS with de endent resources 

 
Figure 3.  A DSS with dependent and redundant resources 

Figure 2 however, does not account for redundant resources.  A redundant resource duplicates 
the functionality of another resource.  Introducing redundant resources generally increases the 
overall system availability because dependencies are distributed across multiple resources.  In 
this context parallel resources are introduced.  The availability of redundant resources (or 
redundant levels within a resource) is given by Equation (4), where P(RR) represents the 
availability of the redundant resource, for all resources comprising the redundant resources r=1 
to t. Redundant levels of a 
resource hierarchy follows 
this same formula replacing 
P(R) with the probability of 
the redundant level’s function 
availability. 

∏
=

−−=
t

r
rRPRRP

1

))(1(1)(  (4)

 
A generalized equation can be given to describe DSS that have redundant or alternate resources 
as shown in Equation (5).  In equation (5), probabilities for redundant resources P(X), are 
calculated separately from non-redundant resources P(R).  As previously discussed, the 
multiplicative rule of probability applies for all resources.   If there are no redundant resources, 
this portion of the problem is removed from the equation.  Similarly, if all the resources are 
redundant, the part of the equation that determines the availability of non-redundant resources is 
removed.  Each redundant resource’s unavailability is calculated over resource j=1 to v.  Then 
that value is subtracted from 1; giving the availability of the composite redundant resource.  That 
result is then multiplied by other redundant resources q=1 to u to determine the availability of all 
redundant resources. 
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Figure 3 extends the DSS in Figure 2 with redundancy in resource B.  Illustrating again with the 
earlier example, Resource A would represent data stored in a data warehouse and Resource C is 
the local processor providing graphical mapping.  Resource B remains the address to latitude and 
longitude service; only this time there is more than one provider from where the address to 
lat/long conversion can be obtained.  To determine the probability of DSS guidance availability 
P(S), the probability of the redundant resource must first be determined and then applied as a 
single value to the remainder of the system.  Because all of the redundant resources must fail 
before the availability of that resource is reduced, the calculation’s use of the likelihood of the 
resource being unavailable takes this into account. The availability probability of the redundant 
resource (B) in Figure 3 is: 
1 - ((1-.50) * (1-.50)) = .75.  
Once this is calculated, the 
problem is the same as the 
previous example, except 
.75 is used for resource B: 
.85 * .75 * .75 = .478, or 
47.8% availability.   



 
The overall resource availability P(S) provides a deterministic value for the likelihood that the 
DSS can supply advice based on the necessary resources.  In a data-oriented decision support 
context, where the DSS provides guidance that is assumed to be correct based on this data, the 
overall resource availability can be directly mapped to the probability of accurate decision 
guidance outcomes.   
 
2.3 Decision Outcome as a Function of Resource Availability: A Probabilistic Model 
The equation shown in the previous section is part of the necessary probabilities to predict 
outcome success.  Equation 5 will provide the likelihood of decision resource availability.   This 
assumes that if available, the DSS will provide a correct and exact answer to the decision 
problem.  However, it is possible for the decision maker to make the correct choice without 
assistance from the DSS.  Therefore, the complete probability of successful outcome must 
include the probability the decision maker makes a choice without assistance from the DSS.  
Equation (6) defines the probability of a correct decision outcome P(C) as:  the probability 
decision-resources are available P(S), plus the probability that the decision maker selects the 
correct answer from the possible alternatives P(A) without the decision support system. 
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Uncertainty about the likelihood of success can be quantified and provided to the decision 
maker, before beginning their interaction with the DSS using Equation (6).  There is a second 
benefit of this probability model that would exist when the decision opportunity is time 
constrained.  Consider the case when a resource is unavailable for some limited time duration.  
Ordinarily limited unavailability would introduce additional uncertainty in the decision making 
process because the decision maker does not know when or if the unavailable resource will 
become available.  The decision maker has to decide whether or not to wait for the resource to 
become available or to proceed without the assistance of the DSS.  Given the probabilistic model 
shown in Equation (6), the decision maker could make that wait-don’t wait decision with insight 
into the resource’s availability.  The uncertainty could be further reduced, if the specific resource 
probability (as opposed to the probability of all the resources) was provided to the decision 
maker.   
 
3. Experimental Evaluation 
More than ever, decision makers depend on data to make and justify their decisions and the 
general assumption is that the data is accurate and the DSS will provide a correct answer (Amaro 
et al. 2005; Covin et al. 2001).  As mobile and cloud computing environments increasingly 
become the norm and system resources become more likely to be distributed (e.g. service 
oriented architectures, computing grids, and distributed databases) the relevance of the research 
in resource availability will be progressively more significant.  As a result, this study raises the 
research question: does the availability of decision-related resources map to decision outcomes in 
a probabilistic manner?  Based on the above discussion and the probabilistic model presented in 
Section 2.3, the following alternate hypothesis is formulated: 
 

Decision-related resource availability maps to accurate decision outcomes 
according to the following probability: P(C) = P(R) + P(A), where P(C) is the 



probability of correct decision outcome, P(R) is the probability decision-
resources are available, and P(A) is the probability that the decision maker 
chooses the correct answer without the decision support system.  

 
To evaluate the probabilistic model, it is desirable to have a scenario where the DSS provides 
deterministic (go/no-go, yes/no, or singular answer) guidance in support of a decision 
opportunity.  Further, the decision needs to be based on selection from possible data alternatives, 
where the data resource may be unavailable.  For purposes of evaluating the above hypothesis, a 
simulation of a stock trading decision was modeled.  Stock purchasing was chosen because it is 
representative of the decision opportunities identified above and easy to understand for a broad 
range of audiences. 
 
A decision problem was constructed where a stock is purchased from the list of Standard & 
Poor’s 500 stocks (S&P 500).  The decision maker has a simple strategy for deciding which 
stock to purchase.  In equity trading, there is a concept that volume precedes price (Fontanills et 
al. 2001) and this is the purchasing strategy that the decision maker employs.   The DSS has the 
capability to identify from the list of 500 which stock has the highest volume for the time of 
purchase and this is the correct advice provided.  To provide this advice, the DSS requires a 
resource that specifically identifies the stock with the highest volume for the purchase period.  
To choose a stock the decision maker requests the highest volume stock for the DSS and always 
takes the provided advice, if available. If the DSS is unable to provide advice, the decision maker 
selects a stock from the list of 500 stocks.   
 
A precise and explicit model of the decision problem and simulation was programmed in Matlab.  
This software provided a robust programming environment where the simulation could be 
created and evaluated.  The resource that provided the high-volume stock selection was coded 
with 5 hierarchy levels according to Figure 1.   Each of these levels was coded with a probability 
between 0 and 100% that would be determined randomly at run time.  The equation shown in (5) 
was coded to determine the overall resource availability probability.  This probability was 
compared to an “outage” variable whose value was also set randomly.  If the outage variable 
value was lower than the resource availability probability, the resource was considered 
unavailable.  The decision maker was also coded as part of the simulation and always took the 
advice offered by the DSS.  When the advice was not available, the simulated decision maker 
chose a stock randomly from the list of 500.   
 
A run of the simulation consisted of the generating the availability probabilities, the outage 
value, and a single decision outcome.  For each run, the availability status of the resource and 
subsequently the DSS advice, was recorded, with the correct stock and the stock selected by the 
decision maker.  Several executions of the simulation were made of varying run sizes from one 
hundred to one million. 
 
4. Results 
The results were collected and analyzed using SPSS.  Correct decision outcomes were coded as 
one and incorrect as zero.  The resource availability status was coded similarly: one for available 
and zero for unavailable.  The probability that the resource was available was determined for 
each run-size and then applied to the probability model to forecast the expected decision 



outcome accuracy.  For example, in the case of the run of 100 decisions, the resource was 
available only 3% of the time.  Applying this value to the probability model shown in Equation 
(6) leads to an expectation of 3 correct outcomes, given by:  (3/100) + (1/500)*100 = 3.2/100.  
Since the measurement of correct outcomes must be an integer value, the model results were 
rounded to the whole number: 3 correct and 97 incorrect outcomes in the run-size with 100 runs. 
This same calculation was performed for each of the run-size sets and used as input to Pearson’s 
Chi-Square Goodness of Fit Test for each.  Pearson’s Chi-Square Goodness of Fit Test evaluates 
how close observed values are to those that would be expected from a model (Chernoff et al. 
1954).  Table 2 shows the results of this test, with the expected column being the calculated 
values from the availability model. 
 

 
RUN-SIZE 

PERCENT 
AVAILABLE OUTCOME EXPECTED OBSERVED RESIDUAL 

CHI-
SQUARE 

ASYMP. 
SIG. 

100 3.00% 
Correct 3 1 

.344 .558
Incorrect 97 96 -1 

1,000 2.80% 
Correct 30 32 2 

.137 .711
Incorrect 970 968 -2 

10,000 3.29% 
Correct 349 345 4 

.048 .827
Incorrect 9,651 9,655 -4 

50,000 3.08% 
Correct 1,639 1,630 9 

.051 .821
Incorrect 48,361 48,370 -9 

100,000 .09% 
Correct 3,285 3,254 31 

.302 .582
Incorrect 96,715 96,746 -31 

500,000 .11% 
Correct 16,565 16,532 33 

.068 .794
Incorrect 483,435 483,468 -33 

1,000,000 3.12% 
Correct 33,158 33,103 55 

.094 .759
Incorrect 966,842 966,897 -55 
Table 2.  Pearson’s Chi-Square goodness of fit results 
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If the computed Chi-Square value is large (generally greater than 1), then the observed and 
expected values are not close and the model is a poor fit to the data.  As is evident in Table 2, the 
test statistic values are small for every run-size indicating the model is a good fit.  The Chi-
Square test was also used to evaluate the hypothesis.  In a Chi Square Goodness of Fit Test, a 
small significance indicates that the observed distribution does not conform to the hypothesized 
distribution (Plackett 1983).  In all of the runs the asymptotic significance was above an alpha = 
.05 level of significance indicating that the distributions are the same; supporting the alternate 
hypothesis.  A second analysis of the expected and observed results’ distribution was conducted 
using a one way ANOVA test.  The results of the ANOVA test yielded a between groups sum of 
squares of .038 with an alpha level = 1.  This result is consistent with and supports the goodness 
of fit test. 
 
5. Conclusion 
This study proposes that cloud computing applications would benefit if availability-related 
context information could be known.  The first step in this research was to determine if it is 
possible to map system availability to system usage/benefit. As this study illustrates, there is a 
probabilistic relationship between decision support-related computing resource availability and 
correct decision outcomes when the decision is structured, the data is correct, and the DSS 



provided guidance is deterministic.  When availability is less than guaranteed, the ambiguity in 
resource availability inserts additional uncertainty in the system usage process.  By providing a 
measure of the likelihood of a correct outcome and details about the availability of individual 
computing resources, users can make informed choices regarding the potential for support from 
cloud based computing applications.   
 
While the model demonstrated in this paper provides a tool for quantifying the likelihood of 
correct outcomes, the real benefit of the model may be realized when availability information is 
extended to the decision maker.  In this sense, the model should be incorporated in client 
hardware and software that utilize cloud computing services. The model is also dependent on 
collected availability context data.  As such, it should be tied to other context-related 
technologies such as location.  This approach would allow the model to be used for predictive 
purposes.  The research in this paper represents a reasonable first step in addressing availability 
issues related to cloud computing, but as it is implemented as a simulation it has the limitations 
of the simulation scenario.  A future study is planned to operationalize the model within a mobile 
client.  This future study will incorporate network sensing with GPS for location data and extend 
the model with a real world cloud computing application. 
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